Highly multiplexed single-cell quantitative PCR
نویسندگان
چکیده
We present a microfluidic device for rapid gene expression profiling in single cells using multiplexed quantitative polymerase chain reaction (qPCR). This device integrates all processing steps, including cell isolation and lysis, complementary DNA synthesis, pre-amplification, sample splitting, and measurement in twenty separate qPCR reactions. Each of these steps is performed in parallel on up to 200 single cells per run. Experiments performed on dilutions of purified RNA establish assay linearity over a dynamic range of at least 104, a qPCR precision of 15%, and detection sensitivity down to a single cDNA molecule. We demonstrate the application of our device for rapid profiling of microRNA expression in single cells. Measurements performed on a panel of twenty miRNAs in two types of cells revealed clear cell-to-cell heterogeneity, with evidence of spontaneous differentiation manifested as distinct expression signatures. Highly multiplexed microfluidic RT-qPCR fills a gap in current capabilities for single-cell analysis, providing a rapid and cost-effective approach for profiling panels of marker genes, thereby complementing single-cell genomics methods that are best suited for global analysis and discovery. We expect this approach to enable new studies requiring fast, cost-effective, and precise measurements across hundreds of single cells.
منابع مشابه
Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection
Multiplexed tandem PCR (MT-PCR) is a process for highly multiplexed gene expression profiling. In the first step, multiple primer pairs are added to the RNA to be analysed together with reverse transcriptase and Taq DNA polymerase. Following reverse transcription, the multiplexed amplicons are simultaneously amplified for a small number of cycles so as to avoid competition between amplicons. Th...
متن کاملAtomic Force Microscopic Detection Enabling Multiplexed Low-Cycle-Number Quantitative Polymerase Chain Reaction for Biomarker Assays
Quantitative polymerase chain reaction is the current "golden standard" for quantification of nucleic acids; however, its utility is constrained by an inability to easily and reliably detect multiple targets in a single reaction. We have successfully overcome this problem with a novel combination of two widely used approaches: target-specific multiplex amplification with 15 cycles of polymerase...
متن کاملHigh-speed All- Optical Time Division Multiplexed Node
In future high-speed self-routing photonic networks based on all-optical time division multiplexing (OTDM) it is highly desirable to carry out packet switching, clock recovery and demultplexing in the optical domain in order to avoid the bottleneck due to the optoelectronics conversion. In this paper we propose a self-routing OTDM node structure composed of an all-optical router and demultiplex...
متن کاملMapping cellular hierarchy by single-cell analysis of the cell surface repertoire.
Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells through...
متن کاملHighly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies
Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteom...
متن کامل